<dfn id="dfhfh"><b id="dfhfh"><video id="dfhfh"></video></b></dfn>
<p id="dfhfh"><mark id="dfhfh"><progress id="dfhfh"></progress></mark></p>

    <pre id="dfhfh"><mark id="dfhfh"><thead id="dfhfh"></thead></mark></pre>

            <del id="dfhfh"></del>

            <noframes id="dfhfh"><ruby id="dfhfh"><mark id="dfhfh"></mark></ruby>

                  <pre id="dfhfh"></pre>
                  技術文章 / article 您的位置:網站首頁 > 技術文章 > 連續在高水平期刊發表重要成果!超精準可調節溫度控制模塊邀您免費體驗!

                  連續在高水平期刊發表重要成果!超精準可調節溫度控制模塊邀您免費體驗!

                  發布時間: 2024-03-04  點擊次數: 76次

                         德國INTERHERENCE公司開發的超精準可調節溫度控制模塊VAHEAT是一款用于光學顯微鏡的精密溫度控制模塊,技術來源于德國著名的馬克斯-普朗克研究所(MPI),兼容市面上絕大多數的商用顯微鏡和物鏡,可在高清成像的同時快速和精確地調節溫度,加熱速率可達100℃/s,最高溫度可達200℃,穩定性0.01℃,是材料研究領域高效工具。該模塊自2021年問世以來,已在《Journal of the American Chemical Society 》、《Small 》、《EMBO Journal 》、《Nature Communications 》、《Nature Methods 》、《Nature Nanotechnology 》等高水平期刊發表數篇文獻。

                   
                  圖1 VAHEAT實物圖
                   
                  圖2 A: VAHEAT各部件名稱
                  B: VAHEAT配有容納液體樣品的智能基板,可安裝在顯微鏡上
                  C: VEAHEAT智能基板含有氧化銦錫(ITO)加熱元件和溫度探頭
                   
                  VAHEAT主要特點:
                  ? 溫度穩定性高:0.01℃
                  ? 溫控范圍廣:RT-200℃
                  ? 優越的成像質量
                  ? 快速且可靠,用于油浸物鏡
                  ? 四種加熱模式可根據用戶需求進行不同的實驗
                  ? 機械穩定性和設備兼容性
                  ? 便于攜帶和安裝
                   
                  VAHEAT兼容多種成像技術:
                  ? 全內反射顯微鏡 Total internal reflection microscopy (TIRM)
                  ? 原子力顯微鏡 Atomic force microscopy (AFM)
                  ? 共聚焦顯微鏡 Confocal microscopy
                  ? 超分辨顯微鏡 Super resolution methods (SIM, STORM, PALM, PAINT, STED)
                  ? 干涉散射顯微鏡 Interferometric scattering microscopy (iSCAT)
                  ? 寬場顯微鏡 Widefield microscopy
                   
                  VAHEAT典型案例:
                   
                  ■ 2D材料的光致發光動態相變
                   
                   
                         猶他大學的Connor Bischak實驗室使用超精準可調節溫度控制模塊VAHEAT獲得了從40°C升高到110°C再降低到40°C,速度為0.2°C/s的光致發光(PL)數據。
                   

                   
                  參考文獻:Rand L. Kingsford …& Connor G. Bischakd. (2023) Controlling Phase Transitions in Two-Dimensional Perovskites through Organic Cation Alloying. Journal of the American Chemical Society, 145, 11773?11780.
                   
                  ■ 納米顆粒的iSCAT成像
                   
                   
                         馬克斯普朗克光科學研究所的Vahid Sandoghdar實驗室致力于研究干涉散射(iSCAT)顯微技術,他們使用超精準可調節溫度控制模塊VAHEAT調整30 nm的金納米顆粒的溫度并檢測擴散系數,所得測量結果與使用金納米顆粒的流體力學直徑(實線)計算出的擴散系數基本一致。
                   
                   
                  參考文獻:Anna D. Kashkanova …& Vahid Sandoghdar. (2022) Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 19, 586–593.
                   
                  ■ AlGaN溫感發光研究
                   
                   
                         華東師范大學武鄂教授使用超精準可調節溫度控制模塊VAHEAT對單光子發射源(SPE)在AlGaN微柱中的溫度依賴性進行了研究。文章針對SPE在不同溫度下的PL光譜、PL強度、輻射壽命等參數,探究了AlGaN SPE在高溫下線寬加寬的可能機制,有助于深入研究如何實現此材料在高溫下工作的芯片集成應用。
                   
                   
                  參考文獻:Yingxian Xue …& E Wu. Temperature-dependent photoluminescence properties of single defects in AlGaN micropillars. Nanotechnology, 34, 225201.
                   
                  ■ 高溫條件下黑金薄膜的拉曼光譜
                   

                   
                         德國柏林亥姆霍茲中心(HZB)的Yan Lu教授和波茨坦大學的Sergio Kogikoski教授使用超精準可調節溫度控制模塊VAHEAT測量了從室溫到122°C不同溫度下黑金薄膜的拉曼光譜。本實驗用低強度激光入射(100 μW)測量拉曼光譜,以通過溫度而不是光照射來誘導反應。
                   
                   
                  參考文獻:Radwan M. Sarhan …& Yan Lu. (2023) Colloidal Black Gold with Broadband Absorption for Plasmon-Induced Dimerization of 4-Nitrothiophenol and Cross-Linking of Thiolated Diazonium Compound. Journal of Physical Chemistry C, https://doi.org/10.1021/acs.jpcc.3c00067.
                   
                  VAHEAT部分客戶:
                   
                   
                  VAHEAT部分發表文獻:
                   
                  1. Rand L. Kingsford …& Connor G. Bischakd. (2023) Controlling Phase Transitions in Two-Dimensional Perovskites through Organic Cation Alloying. Journal of the American Chemical Society, 145, 11773?11780.
                  2. Fan Hong …& Peng Yin. (2023) Thermal-plex: fluidic-free, rapid sequential multiplexed imaging with DNA-encoded thermal channels. Nature Methods, Mai P. Tran …& Kerstin G?pfrich. (2023) A DNA Segregation Module for Synthetic Cells. Small, 19, 2202711.
                  3. Anna D. Kashkanova …& Vahid Sandoghdar. (2022) Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 19, 586–593.
                  4. Pierre St?mmer …& Hendrik Dietz. (2021) A synthetic tubular molecular transport system. NATURE COMMUNICATIONS, 12, 4393.
                  5. Bas W. A. B?gels …& Tom F. A. de Greef. (2023) DNA storage in thermoresponsive microcapsules for repeated random multiplexed data access. Nature Nanotechnology, 18, 912–921.
                  6. Tugce Oz …& Wolfgang Zachariae. (2022) The Spo13/Meikin pathway confines the onset of gamete differentiation to meiosis II in yeast. EMBO Journal, https://doi.org/10.15252/embj.2021109446.
                  7. Valentina Mengoli …& Wolfgang Zachariae. (2021) Deprotection of centromeric cohesin at meiosis II requires APC/C activity but not kinetochore tension. EMBO Journal, https://doi.org/10.15252/embj.2020106812.
                  8. Mariska Brüls …& Ilja K. Voets. (2023) Investigating the impact of exopolysaccharides on yogurt network mechanics and syneresis through quantitative microstructural analysis. Food Hydrocolloids, https://doi.org/10.1016/j.foodhyd.2023.109629.
                  9. Yingxian Xue …& E Wu. Temperature-dependent photoluminescence properties of single defects in AlGaN micropillars. Nanotechnology, 34, 225201.
                  10. https://doi.org/10.1038/s41592-023-02115-3.
                  11. Radwan M. Sarhan …& Yan Lu. (2023) Colloidal Black Gold with Broadband Absorption for Plasmon-Induced Dimerization of 4-Nitrothiophenol and Cross-Linking of Thiolated Diazonium Compound. Journal of Physical Chemistry C, https://doi.org/10.1021/acs.jpcc.3c00067.
                  12. Ma?lle Bénéfice …& Guillaume Baffou. (2023) Dry mass photometry of single bacteria using quantitative wavefront microscopy. Biophysical Journal, https://doi.org/10.1016/j.bpj.2023.06.020
                  13. Jaroslav Icha, Daniel B?ning, and Pierre Türschmann. (2022) Precise and Dynamic Temperature Control in High-Resolution Microscopy with VAHEAT. Microscopy Today, 30(1), 34–41.
                  14. L. Birchall …& C.J. Tuck. (2022) An inkjet-printable fluorescent thermal sensor based on CdSe/ZnS quantum dots immobilised in a silicone matrix. Sensors and Actuators: A. Physical, 347, 113977.
                  15. Rajyalakshmi Meduri …& David S. Gross. (2022) Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density. JOURNAL OF BIOLOGICAL CHEMISTRY, 298(10), 102365.
                  16. Marleen van Wolferen …& Sonja-Verena Albers. (2022) Progress and Challenges in Archaeal Cell Biology. Archaea. Methods in Molecular Biology, 2522, 365–371.
                  17. Wei Liu …& Andreas Walther. (2022) Mechanistic Insights into the Phase Separation Behavior and Pathway-Directed Information Exchange in all-DNA Droplets. Angewandte Chemie, 134, e202208951.
                  18. Céline Molinaro …& Guillaume Baffou. (2021) Are bacteria claustrophobic? The problem of micrometric spatial confinement for the culturing of micro-organisms. RSC Advances, 11, 12500–12506.
                  19. SadmanShakib …& GuillaumeBa?ou. (2021) Microscale Thermophoresis in Liquids Induced by Plasmonic Heating and Characterized by Phase and Fluorescence Microscopies. Journal of Physical Chemistry C, 125, 21533?21542.
                   
                   
                  • 聯系電話電話010-85120887
                  • 傳真傳真010-85120276
                  • 郵箱郵箱info@qd-china.com
                  • 地址公司地址北京市朝陽區酒仙橋路10號 恒通商務園B22座 501 室
                  © 2024 版權所有:QUANTUM量子科學儀器貿易(北京)有限公司   備案號:京ICP備05075508號-3   sitemap.xml   管理登陸   技術支持:化工儀器網       
                  • 公眾號二維碼




                  日产无码久久久久久精品_艳妇乳肉豪妇荡乳av无码福利_亚洲国产精品无码久久九九大片_国产精品尹人在线观看
                  <dfn id="dfhfh"><b id="dfhfh"><video id="dfhfh"></video></b></dfn>
                  <p id="dfhfh"><mark id="dfhfh"><progress id="dfhfh"></progress></mark></p>

                    <pre id="dfhfh"><mark id="dfhfh"><thead id="dfhfh"></thead></mark></pre>

                            <del id="dfhfh"></del>

                            <noframes id="dfhfh"><ruby id="dfhfh"><mark id="dfhfh"></mark></ruby>

                                  <pre id="dfhfh"></pre>